Velké otazky

1.

Definujte Splay strom. Popiste, jak na ném probihaji operace Splay, Find, Insert a Delete. Popiste
vyhody a nevyhody oproti jinym datovym strukturam, zejména vyvazenym vyhledavacim
stromim. Vyslovte a dokaZte vétu o amortizované sloZitosti operace Splay.
« strom, ve kterém vsechny operace vykonavame pomoci Splay
+ nefesime vyvazenost, ale dokazeme, Ze Splay se vidy uamortizuje na log
« Splay: vybrany vrchol pfesunu do kofene pomoci rotaci, pfi¢emz preferuji dvojrotace

» kazdy Splay pouzije nejvyse jednu jedno-rotaci
+ Find: Najdu vrchol jako v BVS, vysplayuji nalezeny nebo posledni navstiveny do vrcholu
+ Insert: Insert jako do normalniho BVS, vysplayuji nalezeny/vlozeny vrchol do koiene

» pridani listu mize byt drahé

- zvy$im rank vSem vrcholim na cesté do kofene

AP =1"(v,q) + ZT'(%) —r(v;)

i=1

jejich rank se zvysi o 1, coz se d4 odhadnout zhora pivodnim rankem jejich rodice —
' (v;) < r(viiq)
- 1’'(v,41) = 0 (je to list)
- AD <7'(vy) —r(vy)
« Delete: Najdu vrchol k odstranéni, vysplayuji do vrcholu, odstranim, vysplayuji nejpraveéjsi
vrchol levého podstromu, spojim dohromady
+ vyhody
» sequential access
» working set
» = vyhledani m prvka z podmnoziny velikosti s je @(nlogn + m + mlogs)
« slozitost Splay:
» zavedeme 7(z) (rank vrcholu) jako log(s(x))
> potencidl je & =3 . r(z;)
» dvojrotace maji amortizovanou cenu A = 37/ (x;) — 3r(z;), jednorotace A = 3r'(z;) —
3r(xz;) + 1 (r je pted rotaci, r’ je po)
» cela Splay je pak posloupnost rotaci jednoho vrcholu, A = (ZZ 3r;(z) — 37‘1-_1(.’13)) +1,
vSechny aZ na posledni rotaci jsou dvojrotace, teleskopicka suma se poséita na

A=3r,(z)—3ry(z)+1

(kde +1 je z posledni rotace)
» Zig-zag:
S A= 24 7(@) 1 (w) + 7 () — (@) — r(w) — r(y)
- s/ (w) + 8" (y) < §'(2)
r'(w) +7'(y) < 2log(s"(w) +"(y)) — 2 < 2r'(z) — 2
- A<3r'(z) —r(z) —r(w) —r(y)
- r(@) < r(w), r(z) < r(y)
- A<3r'(z)—3r(x)
» Zig-zig:
- A=2+7"(2) +r'(y) +1'(2) —r(2) —r(y) —7(2)
s(z) + s'(2) < §'(x)
r(z) +1'(2) < 2log(s(z) + s'(z)) —2 < 2r'(z) — 2
A <3r'(z) +1(y) — 2r(z) —r(y) —r(2)
r'(z) 2 r'(y), r(z) < r(y), r(z) = r'(x)

- A<3'(z)+ 7" (z) —2r(x) —r(z) —r'(x)
- A<3r'(z)—3r(x)
» Zig:
S A=147(@) + 7 (y) — (@) — r(y)
r(@) < r(y) 7 (@) = 7' (y
A<1+42r(x) —2r(zx)
-r'(x)—r(z)>0
A<1+43r'(x) —3r(x)
. Definujte (a,b)-strom. Popiste, jak na ném probihaji operace Find, Insert a Delete. Vyslovte a

dokazte vétu o amortizovaném poctu zmén uzli pro operace Insert a Delete a (a,2a)-stromech. Jak
se to lisi pro (a,2a-1)-stromy? Popiste vyhody a nevyhody oproti jinym datovym strukturam,
zejména vyvazenym binarnim vyhledavacim stromtim.
« stromy, kde pocet potomkt kazdého vrcholu je mezia a b, kde b > 2a — 1
+ hloubka: ©(log, n), O(log, n)
+ Find: musime projit O(h) = O(log, n) = O(logn/loga) vrchold, v kazdém vrcholu vrchol
najdeme binarnim vyhledavanim v O(logb), celkové O(logn - logb/loga)
logn/loga)
« Delete: odstranime kli¢ a nahradime maximem levého podstromu, bud se mergenem se
sousedem, nebo z néj pujéime kli¢ (soused — rodi¢ — my)
+ m po sobé jdoucich insertt do prazdného stromu je v O (m)
» kazdy split zvysi mnozstvi vrcholl, merge nedélame, vrchola je O(m)
« véta: pro (a,2a)-stromy taky m po sobé jdoucich insertt1 a delett do prazdného stromu je v

O(m)
» urcime si potencial podle poé¢tu kli¢t ve vrcholu (a, 2a) — (o — 1,2a — 1)
"1k a—2|la—1]al|..|2a—2|2a—1|2a
f(k) |2 1 0fO0 |0 2 4
» ptidani/odebrani vrcholu - |f(i) — f(i + 1)| < ¢
» split:
- f(2a) = f(a) + fla—1) + c + 1

- <
pridani vrcholu do rodiCe skute¢né cena

-4>0+14+2+1
» merge:
- fla=2)+ fla—1) — f(2a —2) + c + 1
ubrani vrcholu z rodi¢e skute¢na cena

-24+12>20+2+1
» dusledek: Libovolna posloupnost m Insertt a Delett je O(n + m) (mizu postavit
posloupnost n Insertd do prazdného stromu)
+ vyhody:
» cache-aware
» amort. konstantni sloZitost operaci
« nevyhody??
. Definujte I/O model pro spravu cache a srovnejte cache-aware a cache-oblivious algoritmy.
Vyslovte a dokazte Sleatorovu-Tarjanovu vétu o kompetitivnosti LRU. Popiste pfinos této véty
pro analyzu cache-oblivious algoritm?u.
« externi a interni pamét
» interni ma omezenou velikost M

» externi je neomezena, ale lze Cist a zapisovat pouze nactenim bloku velikosti B do interni
pameéti
« I/O slozitost se obvykle urcuje jen ve ¢tenich z externi paméti, protoze zapisy jsou vétsinou
Ctenimi zhora omezené
« algoritmus neovlada, které bloky se vyhodi z kese, je pouzit néjaky online algoritmus
« algoritmus OPT vyhazuje vzdy ten blok, ktery bude potfeba nejdale v budoucnosti — optimum
« algoritmus LRU vyhazuje ten blok, ktery byl pouzit nejdale v minulosti
» umime dokazat, Ze to neni tak $patné:

M LRU

Cru < 75+ Copr + Mopr
Mgy — Mopr

Crry < 2Copr + Mopr
» dukaz
rozdélme posloupnost pristupt k blokiim do epoch ey, ..., €,,, tak, aby pro kazdou epochu

kromé e platilo gy (e;) = Mygy. pro €y: Ciry(€g) < Mgy
pro kazdou epochu kromé e, plati jedna z moznosti:

« vSechny missnuté prvky jsou ruzné, takze Copr(e;) > Mgy — Mopr

« néktery prvek byl missnut vicekrat, takze mezi jeho naétenimi muselo byt pfistoupeno
ke vSem ostatnim prvkam kese, takze opét Copr(e;) > Miry — Mopr

tedy Ciry(e;) = Mygy a Copr(e;) = Migy — Mopr:

CLRU(ei) < M ry
Copr(e;) = Mgy — Mopr

- pro e, pak plati:
« pokud kese zac¢inaji prazdné, vSechny missy LRU jsou rtizné a OPT je vSechny musi
nacist taky, proto Copr(eg) = Crru(eo)
« pokud LRU obsahuje bloky, néjaky miss se miize proménit v hit, ale vysledny LRU
seznam se nezméni
+ pokud OPT obsahuje bloky, budou to pfesné ty, které bude v e, potfebovat, tedy
Copr(€o) = Grruleo) — Mopr
- po zpriimérovani pies epochy e, ...e,, a Mypr z e, ziskame chtény vztah
+ duasledek: ve vétsiné zkoumanych algoritma je zavislost na M takova, Ze vynasobeni
konstantou cM (v tomto pfipadé ¢ = 2) se asymptotika nezméni, takze 1ze predpokladat OPT, i
kdyz se pouzije LRU
4. Definujte c-univerzalni a k-nezavislé rodiny hesovacich funkeci. Uvedte priklady, kde nestaci c-
-universalni rodina hesovacich funkci, ale musime pouzit k-nezavislou rodinu. Formulujte a
dokazte vétu o stfedni délce fetézce v hesovani s fetézci. Ukazte priklady c-univerzalnich a k-
-nezavislych rodin pro hesovani pfirozenych ¢isel. Pro jeden priklad dokaZte c-universalitu nebo
k-nezavislost, pro k = 2.
+ pro danou konstantu ¢, je rodina hashovacich funkci # : & — [m]| c-univerzalni, pokud pro
vSechny riuzné dvojice z,y € U:
Pr [h(z) = h(y)] < —
Pr [h(z) = hiy)] < =
+ pro dané k a konstantu c, je rodina hashovacich funkci # : & — [m] (k, ¢)-nezavisla, pokud
pro kazdou k-tici riznych ...z, € U ay;...y;, € [m]:

Pr b)) =y A Ah(z) =y < —
« pravé linearni adresovani potfebuje 5-nezavislost pro konstantni ¢as, pfipadné kukacky, also
[T] se odkazuje na QuickSort
 délka retézce:

» véta: pro c-univerzalni rodinu K : U — [m], X = {z4, ..., z,,} prvky v ni uloZené, a y prvek

neulozeny:
. cn
Bhescl#i: h(z;) = h(y)] < m
» dk: necht A; je indikatorova veli¢ina, Ze h(z;) = h(y), EA; < % z c-univerzality, E} . A; =
> A, <

» dusledek:
- neuspésné vyhledavani projede cely fetizek s h(y), takze < <&
— Uspésny insert nejdiiv provede netispésné vyhledavani, < £+
— uspésné vyhledavani projde nejvyse tolik prvkd, kolik proslo pfidani daného prvku < £
- netlspésny insert odpovida tspésnému vyhledavani, < <
— delete odpovidéa uspésnému/nedspésnému vyhledavani < <%

» tedy, pokud je m € Q(n) jsou operace na fetizkové hashovaci tabulce konstantni

« priklady:
» Linearni kongruence: pro prvocislo pam < p,

<L [p] - [m] : {h‘a,b ’ a’b € Zp}
hy,b(z) = ((ax + b) mod p) mod m
- Vv Z, existuje pro dané riizné z, y a soustavu:

r = (axz + b) mod p
s = (ay + b) modp

bijekce mezi pary (7, s) a (a,b)
= Prlh, (@) =7 Ahyy(y) = 5] = 1% pro rovnomérné nahodné vybrané a, b
- bez druhého mod m je tedy rodina 2-nezavisla, lemma o moduleni fika, Ze s nim to bude
jen 2¢ horsi
» Polynomialni hashovani:

B o] =)= {ho(2) | ¢ € Z}}
E—1
hy(z) = ZtlacZ mod p

- je k-nezavislé, nebot pro z;...z;, a a;...a;, existuje pravé jeden polynom stupné nejvyse k
takovy, ze plati: Vi : p(z;) = q;
- takovych polynom je p*, mame (k, 1)-nezavislost
- pro [p] = [m], kde p > 2km dava modulici lemma (k, 2)-nezavislost
» Multiply-shift
» Tabulkové hashovani
5. Popiste a analyzujte heSovani s linearnim pfidavanim s plné ndhodnou hesovaci funkei a napf.
tfetinovym zaplnénim. PopiSte vyhody a nevyhody oproti jinym datovym strukturam, zejména
zaloZenym na hesovani.

« do kazdého kybliku hashujeme pouze jeden prvek, v pfipadé kolize hledame h(z) + i mod m

+ pro zaplnénost < % (tedy m > 3n) a plné ndhodnou hashovaci funkci dokazeme konstantni
délku ,béhu”

>

v

v

necht n = % (horsi uz to byt nemiize)

kybliky [m] rozdélime postupné na po sobé jdouci bloky velikosti 2¢ (jako tplny binarni
strom)

blok je kriticky, pokud se do néj zahashuje % - 2% prvka

Cernovova nerovnost: Pro nezavislé ndhodné veli¢iny s hodnotami {0, 1}, jejich soucet
X=X;+..+ X, u=EX]ac>1:

—1\ #
6C
Pr[X > cu| = ()
CC

)& = g2 g =0.879

> Pravdépodobnost, ze blok B velikosti 2* je kriticky je (£
- 1
E[X] =2t =
3

v

v

v

v

v

- Cernov: ¢ = 2,
1
Pr[X >t L. 2] - (i)?'s
3 22
Kazdy béh R, |R| > 21*2 obsahuje alespon jeden kriticky blok délky 2!
- Béh R zasahuje do 4 nebo 5 blok velikosti 2°.
- Prvni blok B, obsahuje alesponi 1 prvek z R, B; ... B; obsahuji 2! prvki

- Pfed B, je prazdno, takze vSechny prvky v L = B,...B; N R se sem i zahashovaly
(neptetekly sem)

- Do L musi byt zahashovanych alespori 1 + 3 - 2%, ale ¢tyti nekritické bloky obsahuji
nejvyse 4 - 2. 2¢,

Necht R je béh obsahujici h(z) a |R| € [2172,2!%3), pak jeden z 12 okolnich bloka je kriticky,

8 pted h(x), 3 po

- R je 4 az 8 bloki dlouhy, ale nemusi byt aligned, takze zasahne 4 az 9 blokt

- pokud konéi blokem s h(z), zabira az 8 blokt ptred h(x)

- pokud za¢ina blokem s h(x), zabira az 8 bloki za h(x), ale kriticky je jeden z prvnich 4

Aby béh R obsahujici h(z) byl dlouhy [2°72,2/%3) musi z okolnich 12 blok byt alespor

jeden kriticky

— Union bound - pravdépodobnost, Ze libovolny z 12 jevi nastane je nejvyse 12 - p

Tedy pro R béh obsahujici h(x),

Pr[R| € [2+2,21+3)] < 12 - Pr[blok velikosti 2 je kriticky] = 12 - ¢*
Pro béh R obsahujici h(x):

E[R] < 3-Pr[R| < 3]+ > 2143.12.¢*

>0

E[R] <3-1+12-8-) 2'.¢*
>0

E[R] <3-1+96-) i-¢’
i>1

- posledni uprava — suma pfed tpravou dosazuje za ¢ jen mocniny dvojky, suma po tpravé
dosazuje vSechna pfirozena ¢isla, coZ je urcité horni odhad
- Gabrielovo schodisté konverguje pro libovolné ¢

6. Definujte vicerozmérné intervalové stromy (range trees). Rozeberte prostorovou sloZitost datové
struktury a ¢asovou slozitost konstrukce a obdélnikovych dotazii (bonus: véetné zrychleni
zlomkovym kaskadovanim).

« Intervalové stromy jsou identické s BVS, jen pfi hledani pamatujeme interval vrchold, které
dany podstrom miize obsahovat
» Vyhledavani intervalu I: Rekurzi,
- pokud je v € I, reportuju v
- pokud je inv(v) C I, reportuju cely podstrom a kon¢im
- rekurzim do potomkd, které zasahuji do I, pokud zasahuji oba, v kazdém mi ztstane jen
jeden konec intervalu a uz budu rekurzit vzdy jednou
+ 2-d intervalové stromy
» v kazdém vrcholu z-stromu je y-strom pro dany podstrom
» kazdy vrchol je v O(log n) sekundarnich stromech (jeden za kazdy vrchol na cesté do kofene)
- pamét O(nlogn)
» vyhledavani:
— pro kazdy nalezeny vrchol z z-stromu se ptam daného y-stromu - O(nlog? n)
» dynamizace - weight-balanced ptestaveni celého nevyvazeného podstromu O (n log? n)
+ d-d intervalové stromy
» v kazdém vrcholu priméarniho stromu je (d — 1)-d strom
» pamét U(n logd—! n)
» vyhledavani v O(n log? n)
+ zlomkové kaskadovani ve 2-d
» misto y-stromi udrzuji sefazena pole a odkazy do podseznamii pod kazdym z x-potomkd,
pro pokracovani vyhledavani
» O(logn)

7. Definujte sufixové pole a LCP pole. Popiste a analyzujte algoritmy na jejich konstrukei (pro
sufixové pole staci ve skoro linearnim case). Popiste ptiklad tlohy, kterou umi tato pole efektivné
resit.

8. Popiste zamky a atomické operace CAS a LL/SC. Navrhnéte a analyzujte bezzamkovou
implementaci zasobniku. Vysvétlete problém ABA a navrhnéte jeho feseni. Porovnejte
paralelizaci datovych struktur za pouZiti zimku a za pouZiti atomikych operaci (tzv. bezzamkové
datové struktury), pfi¢emz v obou pfipadech vysvétlete, jaké mohou nastat problémy.

Malé otazky

1. Popiste dynamické pole, tedy ,nafukovaci pole,, se zvétSovanim a zmensovanim. Analyzujte jeho
amortizovanou slozZitost.
+ kdyZz dojde misto, realokuju na dvojnasobek
« po kazdé realokuji 2x tolik prvka, kolik jsem od posledni realokace ptidal
2. Popiste vyhledavaci stromy s linym vyvazovanim (BB[a]-stromy). Analyzujte jejich
amortizovanou slozitost. Uvedte priklad jejich pouziti.
« zatinam s plné vyvazenym stromem, v kazdém vrcholu si po¢itim mnozstvi vrcholt v
podstromu
« za vyvézeny ho povazuji, pokud im(v) < m(£(v)) < Zm(v)
+ to udrzi log hloubku (délka cesty je omezena log% (n))
» postavit novy podstrom trva n Casu, ale od jeho posledni pfestavby z tohoto vrcholu jsem
musel pridat %n vrcholil = amort
» potencial je soucet pfes vSechny vrcholy |m(#(v)) — m(z(v))|
» pokud je strom vyvazeny, je potencial 0, ne 1

« pouziti: k-d stromy, k-d intervalace? prosté BVS?

3. Navrhnéte operace Find, Insert a Delete na Splay stromu. Analyzujte jejich amortizovanou

sloZitost. Vétu o slozitosti operace Splay staci vyslovit, nemusite ji dokazovat.
« slozitost Splay: 3 - (7’ (v) — r(v)) + 1, kde 7(v) je log mohutnosti vrcholu v pfed Splay a
r’(v) je po Splay
» mohutnosti jsou O (logn)
» vSechny operace miizu nauctovat Splayi, ktery je O(logn)
« Find: Najdu jako v BVS a vysplayuju do kofene
« Insert: Insetrnu jako v BVS a vysplayuju do kofene
» pfidanim listu zvysim rank celé cesty a tim i potencidl, ale jen o O (logn)
 Delete: Vysplayuju do kofene, deletenu, vysplayuju pravého syna levého podstromu
. Analyzujte hloubku (a,b)-stromi.
« pro hloubku A plati h € ©(logn)

. Analyzujte k-cestny Mergesort v cache-aware modelu. Jaka je optimalni volba k?

log
log

+ kazda vrstva je Q(nlog k) (pouzivame haldu)
sloZitost @(%) = O(nlogn)
» potfebujeme K blokl na jednotlivé priichody a dalsich K na udrzeni haldy, takze M > 2BK,

KeO(%)

.. n 1 . n 1
10 slozitost O (3 - 1257) = O(% - %55

. Formulujte cache-oblivious algoritmus pro transpozici ¢tvercové matice. Rozeberte ¢asovou

« log, n = ;2% priichodt

slozitost a I/O slozitost.

» rekurzivni, rozdélime transpozici na dvé transpozice a dvé kombinované transpozice a
prohozeni

« transpozice a prohozeni se dale rozdéluje na ¢tyfi transpozice a prohozeni

+ k realnému swapovani dochazi pouze na nejnizsi tirovni rekurze, kazdy prvek se swapne
jednou, O (n?)

» 10 slozitost, v uréitou chvili swapujeme a transponujeme dva bloky velikosti B x B, pokud je
kes velké alespon 2 - B2 (tall cache assumption, pak se celé takové blo¢ky vejdou do kese a
transponuje se dobfe, kazdy blok nacteme jen jednou, O (N?f)

. Popiste systém hesovacich funkci odvozeny ze skalarniho soucinu. Dokazte, ze je to 1-

-univerzalni systém ze Z’; do Z,.

+ h,(z) = xv, vektor v je ndhodné generovany a parametrizuje hashovaci funkei

+ c-universalnost: B4 [h(z) = h(y)] < 7

« necht se x a 'y lisi v d-tém prvku, P[zv = yv] = P[(z — y)v = 0], bude platit pro pravé jednu
volbu v; = 1—1)

. Popiste systém hesovacich funkci zaloZenych na linearni kongruenci. Dokazte, Ze je to 2-

-nezavisly systém ze Z,, do [m] (mizete vyuzit lemma o moduleni, které zformulujte, ale

nemusite dokazovat).

* hyp(z) = ((ax + b) mod p) mod m

« k,c-nezavislost: B, g [h(71) =y, A ... ANh(hy) = y] = -5

+ lemma o moduleni: pokud 7 je k, c-nezavisly systém z U do [r], pak pro 2km < r,
J modm je k, 2c-nezavisly

« vybér

r = (axz + b) mod p
s = (ay + b) mod p

je bijektivni na vybér a, b, tedy je i 2-nezavisly

10.

11.

12.

13.

14.

15.

. Sestrojte k-nezavisly systém hesovacich funkci ze Z,, do [m]. Zdtvodnéte k-nezavislost (mizete

vyuzit lemma o moduleni, které zformulujte, ale nemusite dokazovat).

« Bo={h, |t €Tt} b, =Y ;2

« existuje pravé jeden polynom takovy, Ze pro ...z a y...y;, tz h(z;) = y,; pro kazdé i, tzn.
pravdépodobnost je #

+ pfes lemma o moduleni, pokud p > 2km, mame po vymoduleni k, 2-nezavisly systém

Sestrojte 2-nezavisly systém hesujici fetézce délky nejvyse L nad abecedou [a] do [m] zaloZeny

na polynomech, tedy ,rolling hash®. Popiste vyhodu pouziti tohoto systému oproti jinym

hesovacim funkcim.

s R={hy | a €Ly} hyy = 1 w100

» da se posouvat v konstantnim ¢ase — vynasobim a, pfi¢tu pfichozi znak, ode¢tu odchozi znak -
a® (musim piedpocitat a’)

Popiste a analyzujte Bloomuv filtr. Uvedte pfiklad jeho praktického pouziti.

« pomoci hashe indexujeme v poli bitd a flipujeme bity nahoru pro prvky, které jsme vidéli

« pak se muzeme ptat ,vidéli jsme tenhle prvek?“, na coz dostaneme bud korektni NE, nebo
possibly flase positive ANO

» typicky k hashovacich funkei

+ také lze mit vSechny hashe v jednom poli

« s pocitadly lze i delete

Definujte k-d stromy a ukazte, ze 2-d intervalové dotazy trvaji Q(vn).

« pro data z R¥ vytvaiim strom, kde na [-té trovni mam median danych podstromi v dimenzi
lmod k

« pro {0} X R to suckuje, pro z jdu furt do leva, ale pro y furt rekurzim do vSech

Ukazte, jak dynamizovat dvou dimenzionalni intervalové stromy (tedy Range trees), sta¢i Insert.

« pomoci BB[c] stromil, @(log® n)

Ukazte, jak pouzit sufixové pole a LCP pole na nalezeni nejdelsiho spole¢ného podietézce dvou

fetézct.

« concatnu za sebe s pomoci oddélovaciho znaku, najdu max v LCP t.Z. jeden je pfed a jeden je
za oddélovacem

Ukazte, jak paralelizovat (a,b)-strom pomoci zamk.

« pomoci top-down strategie — preemptivné rozdélujeme/spojujeme uz pti cesté dol, abychom
vzdy mohli udélat Insert nebo Delete

« zamykame vZdy dva vrcholy za sebou

« pfi deletu mize davat smysl vidy zamykat nejdiiv levého sourozence — pro pfipad, Ze s nim
budeme sluc¢ovat nebo ptijcovat

cv v

hledat naslednika, kdyztak se da vrchol oznacit hrobe¢kem

	Velké otázky
	Malé otázky

