
Velké otázky
1. Definujte Splay strom. Popište, jak na něm probíhají operace Splay, Find, Insert a Delete. Popište 

výhody a nevýhody oproti jiným datovým strukturám, zejména vyváženým vyhledávacím 
stromům. Vyslovte a dokažte větu o amortizované složitosti operace Splay.
• strom, ve kterém všechny operace vykonáváme pomocí Splay
• neřešíme vyváženost, ale dokážeme, že Splay se vždy uamortizuje na log
• Splay: vybraný vrchol přesunu do kořene pomocí rotací, přičemž preferuji dvojrotace

‣ každý Splay použije nejvýše jednu jedno-rotaci
• Find: Najdu vrchol jako v BVS, vysplayuji nalezený nebo poslední navštívený do vrcholu
• Insert: Insert jako do normálního BVS, vysplayuji nalezený/vložený vrchol do kořene

‣ přidání listu může být drahé
– zvýším rank všem vrcholům na cestě do kořene
–

ΔΦ = 𝑟′(𝑣𝑡+1) + ∑
𝑡

𝑖=1
𝑟′(𝑣𝑖) − 𝑟(𝑣𝑖)

– jejich rank se zvýší o 1, což se dá odhadnout zhora původním rankem jejich rodiče – 

𝑟′(𝑣𝑖) ≤ 𝑟(𝑣𝑖−1)
– 𝑟′(𝑣𝑡+1) = 0 (je to list)
– ΔΦ ≤ 𝑟′(𝑣1) − 𝑟(𝑣𝑡)

• Delete: Najdu vrchol k odstranění, vysplayuji do vrcholu, odstraním, vysplayuji nejpravější 
vrchol levého podstromu, spojím dohromady

• výhody
‣ sequential access
‣ working set
‣ ⇒ vyhledání 𝑚 prvků z podmnožiny velikosti 𝑠 je 𝓞(𝑛 log 𝑛 + 𝑚 + 𝑚 log 𝑠)

• složitost Splay:
‣ zavedeme 𝑟(𝑥) (rank vrcholu) jako log(𝑠(𝑥))
‣ potenciál je Φ = ∑𝑥𝑖∈𝑉 𝑟(𝑥𝑖)
‣ dvojrotace mají amortizovanou cenu 𝐴 = 3𝑟′(𝑥𝑖) − 3𝑟(𝑥𝑖), jednorotace 𝐴 = 3𝑟′(𝑥𝑖) −

3𝑟(𝑥𝑖) + 1 (𝑟 je před rotací, 𝑟′ je po)
‣ celá Splay je pak posloupnost rotací jednoho vrcholu, 𝐴 = (∑𝑖 3𝑟𝑖(𝑥) − 3𝑟𝑖−1(𝑥)) + 1, 

všechny až na poslední rotaci jsou dvojrotace, teleskopická suma se posčítá na

𝐴 = 3𝑟𝑛(𝑥) − 3𝑟0(𝑥) + 1

(kde +1 je z poslední rotace)
‣ zig-zag:

– 𝐴 = 2 + 𝑟′(𝑥) + 𝑟′(𝑤) + 𝑟′(𝑦) − 𝑟(𝑥) − 𝑟(𝑤) − 𝑟(𝑦)
– 𝑠′(𝑤) + 𝑠′(𝑦) ≤ 𝑠′(𝑥)
– 𝑟′(𝑤) + 𝑟′(𝑦) ≤ 2 log(𝑠′(𝑤) + 𝑠′(𝑦)) − 2 ≤ 2𝑟′(𝑥) − 2
– 𝐴 ≤ 3𝑟′(𝑥) − 𝑟(𝑥) − 𝑟(𝑤) − 𝑟(𝑦)
– 𝑟(𝑥) ≤ 𝑟(𝑤), 𝑟(𝑥) ≤ 𝑟(𝑦)
– 𝐴 ≤ 3𝑟′(𝑥) − 3𝑟(𝑥)

‣ zig-zig:
– 𝐴 = 2 + 𝑟′(𝑥) + 𝑟′(𝑦) + 𝑟′(𝑧) − 𝑟(𝑥) − 𝑟(𝑦) − 𝑟(𝑧)
– 𝑠(𝑥) + 𝑠′(𝑧) ≤ 𝑠′(𝑥)
– 𝑟(𝑥) + 𝑟′(𝑧) ≤ 2 log(𝑠(𝑥) + 𝑠′(𝑧)) − 2 ≤ 2𝑟′(𝑥) − 2
– 𝐴 ≤ 3𝑟′(𝑥) + 𝑟′(𝑦) − 2𝑟(𝑥) − 𝑟(𝑦) − 𝑟(𝑧)
– 𝑟′(𝑥) ≥ 𝑟′(𝑦), 𝑟(𝑥) ≤ 𝑟(𝑦), 𝑟(𝑧) = 𝑟′(𝑥)



– 𝐴 ≤ 3𝑟′(𝑥) + 𝑟′(𝑥) − 2𝑟(𝑥) − 𝑟(𝑥) − 𝑟′(𝑥)
– 𝐴 ≤ 3𝑟′(𝑥) − 3𝑟(𝑥)

‣ zig:
– 𝐴 = 1 + 𝑟′(𝑥) + 𝑟′(𝑦) − 𝑟(𝑥) − 𝑟(𝑦)
– 𝑟(𝑥) ≤ 𝑟(𝑦), 𝑟′(𝑥) ≥ 𝑟′(𝑦)
– 𝐴 ≤ 1 + 2𝑟′(𝑥) − 2𝑟(𝑥)
– 𝑟′(𝑥) − 𝑟(𝑥) ≥ 0
– 𝐴 ≤ 1 + 3𝑟′(𝑥) − 3𝑟(𝑥)

2. Definujte (a,b)-strom. Popište, jak na něm probíhají operace Find, Insert a Delete. Vyslovte a 
dokažte větu o amortizovaném počtu změn uzlů pro operace Insert a Delete a (a,2a)-stromech. Jak 
se to liší pro (a,2a-1)-stromy? Popište výhody a nevýhody oproti jiným datovým strukturám, 
zejména vyváženým binárním vyhledávacím stromům.
• stromy, kde počet potomků každého vrcholu je mezi 𝑎 a 𝑏, kde 𝑏 ≥ 2𝑎 − 1
• hloubka: Θ(log𝑏 𝑛), 𝒪︀(log𝑎 𝑛)
• Find: musíme projít 𝒪︀(ℎ) = 𝒪︀(log𝑎 𝑛) = 𝒪︀(log 𝑛/ log 𝑎) vrcholů, v každém vrcholu vrchol 

najdeme binárním vyhledáváním v 𝒪︀(log 𝑏), celkově 𝒪︀(log 𝑛 ⋅ log 𝑏/ log 𝑎)
• Insert: přidáme klíč do nejnižšího vrcholu, splitujeme, je-li třeba, split trvá 𝒪︀(𝑏), celkově 𝒪︀(𝑏 ⋅

log 𝑛/ log 𝑎)
• Delete: odstraníme klíč a nahradíme maximem levého podstromu, buď se mergenem se 

sousedem, nebo z něj půjčíme klíč (soused → rodič → my)
• 𝑚 po sobě jdoucích insertů do prázdného stromu je v 𝓞(𝑚)

‣ každý split zvýší množství vrcholů, merge neděláme, vrcholů je 𝒪︀(𝑚)
• věta: pro (a,2a)-stromy taky 𝑚 po sobě jdoucích insertů a deletů do prázdného stromu je v 

𝓞(𝑚)
‣ určíme si potenciál podle počtu klíčů ve vrcholu (𝑎, 2𝑎) → (𝑎 − 1, 2𝑎 − 1)
‣ 𝑘 𝑎 − 2 𝑎 − 1 𝑎 … 2𝑎 − 2 2𝑎 − 1 2𝑎

𝑓(𝑘) 2 1 0 0 0 2 4

‣ přidání/odebrání vrcholu – |𝑓(𝑖) − 𝑓(𝑖 + 1)| ≤ 𝑐
‣ split:

– 𝑓(2𝑎) → 𝑓(𝑎) + 𝑓(𝑎 − 1) + 𝑐⏟
přidání vrcholu do rodiče

+ 1⏟
skutečná cena

– 4 ≥ 0 + 1 + 2 + 1
‣ merge:

– 𝑓(𝑎 − 2) + 𝑓(𝑎 − 1) → 𝑓(2𝑎 − 2) + 𝑐⏟
ubrání vrcholu z rodiče

+ 1⏟
skutečná cena

– 2 + 1 ≥ 0 + 2 + 1
‣ důsledek: Libovolná posloupnost 𝑚 Insertů a Deletů je 𝒪︀(𝑛 + 𝑚) (můžu postavit 

posloupnost 𝑛 Insertů do prázdného stromu)
• výhody:

‣ cache-aware
‣ amort. konstantní složitost operací

• nevýhody??
3. Definujte I/O model pro správu cache a srovnejte cache-aware a cache-oblivious algoritmy. 

Vyslovte a dokažte Sleatorovu-Tarjanovu větu o kompetitivnosti LRU. Popište přínos této věty 
pro analýzu cache-oblivious algoritmů.
• externí a interní paměť

‣ interní má omezenou velikost 𝑀



‣ externí je neomezená, ale lze číst a zapisovat pouze načtením bloku velikosti 𝐵 do interní 
paměti

• I/O složitost se obvykle určuje jen ve čteních z externí paměti, protože zápisy jsou většinou 
čteními zhora omezené

• algoritmus neovládá, které bloky se vyhodí z keše, je použit nějaký online algoritmus
• algoritmus OPT vyhazuje vždy ten blok, který bude potřeba nejdále v budoucnosti – optimum
• algoritmus LRU vyhazuje ten blok, který byl použit nejdále v minulosti

‣ umíme dokázat, že to není tak špatné:

𝐶LRU ≤ 𝑀LRU
𝑀LRU − 𝑀OPT

⋅ 𝐶OPT + 𝑀OPT

tedy, pokud 𝑀LRU = 2 ⋅ 𝑀OPT:

𝐶LRU ≤ 2𝐶OPT + 𝑀OPT

‣ důkaz
– rozdělme posloupnost přístupů k blokům do epoch 𝑒0, …, 𝑒𝑛, tak, aby pro každou epochu 

kromě 𝑒0 platilo 𝐶LRU(𝑒𝑖) = 𝑀LRU, pro 𝑒0: 𝐶LRU(𝑒0) ≤ 𝑀LRU
– pro každou epochu kromě 𝑒0 platí jedna z možností:

• všechny missnuté prvky jsou různé, takže 𝐶OPT(𝑒𝑖) ≥ 𝑀LRU − 𝑀OPT
• některý prvek byl missnut vícekrát, takže mezi jeho načteními muselo být přistoupeno 

ke všem ostatním prvkům keše, takže opět 𝐶OPT(𝑒𝑖) ≥ 𝑀LRU − 𝑀OPT
– tedy 𝐶LRU(𝑒𝑖) = 𝑀LRU a 𝐶OPT(𝑒𝑖) ≥ 𝑀LRU − 𝑀OPT:

𝐶LRU(𝑒𝑖)
𝐶OPT(𝑒𝑖)

≤ 𝑀LRU
𝑀LRU − 𝑀OPT

– pro 𝑒0 pak platí:
• pokud keše začínají prázdné, všechny missy LRU jsou různé a OPT je všechny musí 

načíst taky, proto 𝐶OPT(𝑒0) ≥ 𝐶LRU(𝑒0)
• pokud LRU obsahuje bloky, nějaký miss se může proměnit v hit, ale výsledný LRU 

seznam se nezmění
• pokud OPT obsahuje bloky, budou to přesně ty, které bude v 𝑒0 potřebovat, tedy 

𝐶OPT(𝑒0) ≥ 𝐶LRU(𝑒0) − 𝑀OPT
– po zprůměrování přes epochy 𝑒1…𝑒𝑛 a 𝑀OPT z 𝑒0 získáme chtěný vztah

• důsledek: ve většině zkoumaných algoritmů je závislost na 𝑀  taková, že vynásobení 

konstantou 𝑐𝑀  (v tomto případě 𝑐 = 2) se asymptotika nezmění, takže lze předpokládat OPT, i 
když se použije LRU

4. Definujte c-univerzální a k-nezávislé rodiny hešovacích funkcí. Uveďte příklady, kde nestačí c-
-universální rodina hešovacích funkcí, ale musíme použít k-nezávislou rodinu. Formulujte a 
dokažte větu o střední délce řetězce v hešování s řetězci. Ukažte příklady c-univerzálních a k-
-nezávislých rodin pro hešování přirozených čísel. Pro jeden příklad dokažte c-universalitu nebo 
k-nezávislost, pro k ≥ 2.
• pro danou konstantu 𝑐, je rodina hashovacích funkcí ℋ︀ : 𝒰︀ → [𝑚] 𝑐-univerzální, pokud pro 

všechny různé dvojice 𝑥, 𝑦 ∈ 𝒰︀:

Pr
ℎ∈ℋ︀

[ℎ(𝑥) = ℎ(𝑦)] ≤ 𝑐
𝑚

• pro dané 𝑘 a konstantu 𝑐, je rodina hashovacích funkcí ℋ︀ : 𝒰︀ → [𝑚] (𝑘, 𝑐)-nezávislá, pokud 

pro každou 𝑘-tici různých 𝑥1…𝑥𝑘 ∈ 𝒰︀ a 𝑦1…𝑦𝑘 ∈ [𝑚]:



Pr
ℎ∈ℋ︀

[ℎ(𝑥1) = 𝑦1 ∧ … ∧ ℎ(𝑥𝑘) = 𝑦𝑘] ≤ 𝑐
𝑚𝑘

• právě lineární adresování potřebuje 5-nezávislost pro konstantní čas, případně kukačky, also 
[T] se odkazuje na QuickSort

• délka řetězce:
‣ věta: pro 𝑐-univerzální rodinu ℋ︀ : 𝒰︀ → [𝑚], 𝑋 = {𝑥1, …, 𝑥𝑛} prvky v ní uložené, a 𝑦 prvek 

neuložený:

𝔼ℎ∈ℋ︀[#𝑖 : ℎ(𝑥𝑖) = ℎ(𝑦)] ≤ 𝑐𝑛
𝑚

‣ dk: nechť 𝐴𝑖 je indikátorová veličina, že ℎ(𝑥𝑖) = ℎ(𝑦), 𝔼𝐴𝑖 ≤ 𝑐
𝑚  z 𝑐-univerzality, 𝔼 ∑𝑖 𝐴𝑖 =

∑𝑖 𝔼𝐴𝑖 ≤ 𝑐𝑛
𝑚

‣ důsledek:
– neúspěšné vyhledávání projede celý řetízek s ℎ(𝑦), takže ≤ 𝑐𝑛

𝑚
– úspěšný insert nejdřív provede neúspěšné vyhledávání, ≤ 𝑐𝑛

𝑚
– úspěšné vyhledávání projde nejvýše tolik prvků, kolik prošlo přidání daného prvku ≤ 𝑐𝑛

𝑚
– neúspěšný insert odpovídá úspěšnému vyhledávání, ≤ 𝑐𝑛

𝑚
– delete odpovídá úspěšnému/neúspěšnému vyhledávání ≤ 𝑐𝑛

𝑚
‣ tedy, pokud je 𝑚 ∈ Ω(𝑛) jsou operace na řetízkové hashovací tabulce konstantní

• příklady:
‣ Lineární kongruence: pro prvočíslo 𝑝 a 𝑚 < 𝑝,

ℒ︀ : [𝑝] → [𝑚] : {ℎ𝑎,𝑏 | 𝑎, 𝑏 ∈ ℤ𝑝}

ℎ𝑎, 𝑏(𝑥) = ((𝑎𝑥 + 𝑏) mod 𝑝) mod 𝑚

– v ℤ𝑝 existuje pro dané různé 𝑥, 𝑦 a soustavu:

𝑟 = (𝑎𝑥 + 𝑏) mod 𝑝
𝑠 = (𝑎𝑦 + 𝑏) mod 𝑝

bijekce mezi páry (𝑟, 𝑠) a (𝑎, 𝑏)
– Pr[ℎ𝑎,𝑏(𝑥) = 𝑟 ∧ ℎ𝑎,𝑏(𝑦) = 𝑠] = 1

𝑝2  pro rovnoměrně náhodně vybrané 𝑎, 𝑏
– bez druhého mod 𝑚 je tedy rodina 2-nezávislá, lemma o modulení říká, že s ním to bude 

jen 2𝑐 horší
‣ Polynomiální hashování:

𝒫︀𝑘 : [𝑝] → [𝑝] : {ℎ𝒕(𝑥) | 𝒕 ∈ ℤ𝑘
𝑝}

ℎ𝒕(𝑥) = ∑
𝑘−1

𝑖=0
𝑡𝑖𝑥𝑖 mod 𝑝

– je 𝑘-nezávislé, neboť pro 𝑥1…𝑥𝑘 a 𝑎1…𝑎𝑘 existuje právě jeden polynom stupně nejvýše 𝑘 

takový, že platí: ∀𝑖 : 𝑝(𝑥𝑖) = 𝑎𝑖
– takových polynomů je 𝑝𝑘, máme (𝑘, 1)-nezávislost
– pro [𝑝] → [𝑚], kde 𝑝 > 2𝑘𝑚 dává modulící lemma (𝑘, 2)-nezávislost

‣ Multiply-shift
‣ Tabulkové hashování

5. Popište a analyzujte hešování s lineárním přidáváním s plně náhodnou hešovací funkcí a např. 
třetinovým zaplněním. Popište výhody a nevýhody oproti jiným datovým strukturám, zejména 
založeným na hešování.



• do každého kyblíku hashujeme pouze jeden prvek, v případě kolize hledáme ℎ(𝑥) + 𝑖 mod 𝑚
• pro zaplněnost ≤ 1

3  (tedy 𝑚 ≥ 3𝑛) a plně náhodnou hashovací funkci dokážeme konstantní 
délku „běhů“
‣ nechť 𝑛 = 𝑚

3  (horší už to být nemůže)
‣ kyblíky [𝑚] rozdělíme postupně na po sobě jdoucí bloky velikosti 2𝑡 (jako úplný binární 

strom)
‣ blok je kritický, pokud se do něj zahashuje 23 ⋅ 2𝑡 prvků
‣ Černovova nerovnost: Pro nezávislé náhodné veličiny s hodnotami {0, 1}, jejich součet 

𝑋 = 𝑋1 + … + 𝑋𝑘, 𝜇 = 𝔼[𝑋] a 𝑐 > 1:

Pr[𝑋 ≥ 𝑐𝜇] = (𝑒𝑐−1

𝑐𝑐 )
𝜇

‣ Pravděpodobnost, že blok 𝐵 velikosti 2𝑡 je kritický je (𝑒
4)(1

3)2𝑡

= 𝑞2𝑡
, 𝑞 =̇ 0.879

–
𝔼[𝑋] = 2𝑡 ⋅ 1

3
– Černov: 𝑐 = 2,

Pr[𝑋 ≥ 2𝑡 ⋅ 1
3

⋅ 2] = ( 𝑒
22 )

2𝑡⋅13

‣ Každý běh 𝑅, |𝑅| ≥ 2𝑙+2 obsahuje alespoň jeden kritický blok délky 2𝑙

– Běh 𝑅 zasahuje do 4 nebo 5 bloků velikosti 2𝑙.
– První blok 𝐵0 obsahuje alespoň 1 prvek z 𝑅, 𝐵1…𝐵3 obsahují 2𝑙 prvků
– Před 𝐵0 je prázdno, takže všechny prvky v 𝐿 = 𝐵0…𝐵3 ∩ 𝑅 se sem i zahashovaly 

(nepřetekly sem)
– Do 𝐿 musí být zahashovaných alespoň 1 + 3 ⋅ 2𝑡, ale čtyři nekritické bloky obsahují 

nejvýše 4 ⋅ 2
3 ⋅ 2𝑡.

‣ Nechť 𝑅 je běh obsahující ℎ(𝑥) a |𝑅| ∈ [2𝑙+2, 2𝑙+3), pak jeden z 12 okolních bloků je kritický, 

8 před ℎ(𝑥), 3 po
– 𝑅 je 4 až 8 bloků dlouhý, ale nemusí být aligned, takže zasáhne 4 až 9 bloků
– pokud končí blokem s ℎ(𝑥), zabírá až 8 bloků před ℎ(𝑥)
– pokud začíná blokem s ℎ(𝑥), zabírá až 8 bloků za ℎ(𝑥), ale kritický je jeden z prvních 4

‣ Aby běh 𝑅 obsahující ℎ(𝑥) byl dlouhý [2𝑙+2, 2𝑙+3), musí z okolních 12 bloků být alespoň 
jeden kritický
– Union bound – pravděpodobnost, že libovolný z 12 jevů nastane je nejvýše 12 ⋅ 𝑝

‣ Tedy pro 𝑅 běh obsahující ℎ(𝑥),

Pr⟦𝑅| ∈ [2𝑙+2, 2𝑙+3)] ≤ 12 ⋅ Pr[blok velikosti 2𝑙 je kritický] = 12 ⋅ 𝑞2𝑙

‣ Pro běh 𝑅 obsahující ℎ(𝑥):

𝔼⟦𝑅⟧ ≤ 3 ⋅ Pr⟦𝑅| ≤ 3] + ∑
𝑙≥0

2𝑙+3 ⋅ 12 ⋅ 𝑞2𝑙

𝔼⟦𝑅⟧ ≤ 3 ⋅ 1 + 12 ⋅ 8 ⋅ ∑
𝑙≥0

2𝑙 ⋅ 𝑞2𝑙

𝔼⟦𝑅⟧ ≤ 3 ⋅ 1 + 96 ⋅ ∑
𝑖≥1

𝑖 ⋅ 𝑞𝑖

– poslední úprava – suma před úpravou dosazuje za 𝑖 jen mocniny dvojky, suma po úpravě 
dosazuje všechna přirozená čísla, což je určitě horní odhad

– Gabrielovo schodiště konverguje pro libovolné 𝑞



6. Definujte vícerozměrné intervalové stromy (range trees). Rozeberte prostorovou složitost datové 
struktury a časovou složitost konstrukce a obdélníkových dotazů (bonus: včetně zrychlení 
zlomkovým kaskádováním).
• Intervalové stromy jsou identické s BVS, jen při hledání pamatujeme interval vrcholů, které 

daný podstrom může obsahovat
‣ Vyhledávání intervalu 𝐼 : Rekurzí,

– pokud je 𝑣 ∈ 𝐼 , reportuju 𝑣
– pokud je inv(𝑣) ⊆ 𝐼 , reportuju celý podstrom a končím
– rekurzím do potomků, které zasahují do 𝐼 , pokud zasahují oba, v každém mi zůstane jen 

jeden konec intervalu a už budu rekurzit vždy jednou
• 2-d intervalové stromy

‣ v každém vrcholu 𝑥-stromu je 𝑦-strom pro daný podstrom
‣ každý vrchol je v 𝒪︀(log 𝑛) sekundárních stromech (jeden za každý vrchol na cestě do kořene) 

– paměť 𝒪︀(𝑛 log 𝑛)
‣ vyhledávání:

– pro každý nalezený vrchol z 𝑥-stromu se ptám daného 𝑦-stromu – 𝒪︀(𝑛 log2 𝑛)
‣ dynamizace - weight-balanced přestavení celého nevyváženého podstromu 𝒪︀(𝑛 log2 𝑛)

• 𝑑-d intervalové stromy
‣ v každém vrcholu primárního stromu je (𝑑 − 1)-d strom
‣ paměť 𝒪︀(𝑛 log𝑑−1 𝑛)
‣ vyhledávání v 𝒪︀(𝑛 log𝑑 𝑛)

• zlomkové kaskádování ve 2-d
‣ místo 𝑦-stromů udržuji seřazená pole a odkazy do podseznamů pod každým z 𝑥-potomků, 

pro pokračování vyhledávání
‣ 𝒪︀(log 𝑛)

7. Definujte sufixové pole a LCP pole. Popište a analyzujte algoritmy na jejich konstrukci (pro 
sufixové pole stačí ve skoro lineárním čase). Popište příklad úlohy, kterou umí tato pole efektivně 
řešit.

8. Popište zámky a atomické operace CAS a LL/SC. Navrhněte a analyzujte bezzámkovou 
implementaci zásobníku. Vysvětlete problém ABA a navrhněte jeho řešení. Porovnejte 
paralelizaci datových struktur za použití zámků a za použití atomikých operací (tzv. bezzámkové 
datové struktury), přičemž v obou případech vysvětlete, jaké mohou nastat problémy.

Malé otázky
1. Popište dynamické pole, tedy „nafukovací pole„ se zvětšováním a zmenšováním. Analyzujte jeho 

amortizovanou složitost.
• když dojde místo, realokuju na dvojnásobek
• po každé realokuji 2× tolik prvků, kolik jsem od poslední realokace přidal

2. Popište vyhledávací stromy s líným vyvažováním (BB[α]-stromy). Analyzujte jejich 
amortizovanou složitost. Uveďte příklad jejich použití.
• začínám s plně vyváženým stromem, v každém vrcholu si počítám množství vrcholů v 

podstromu
• za vyvážený ho považuji, pokud 13𝑚(𝑣) ≤ 𝑚(𝓁︀(𝑣)) ≤ 2

3𝑚(𝑣)
• to udrží log hloubku (délka cesty je omezená log3

2
(𝑛))

• postavit nový podstrom trvá 𝑛 času, ale od jeho poslední přestavby z tohoto vrcholu jsem 

musel přidat 13𝑛 vrcholů ⇒ amort
‣ potenciál je součet přes všechny vrcholy |𝑚(𝓁︀(𝑣)) − 𝑚(𝓅︀(𝑣))|
‣ pokud je strom vyvážený, je potenciál 0, ne 1



• použití: k-d stromy, k-d intervaláče? prostě BVS?
3. Navrhněte operace Find, Insert a Delete na Splay stromu. Analyzujte jejich amortizovanou 

složitost. Větu o složitosti operace Splay stačí vyslovit, nemusíte ji dokazovat.
• složitost Splay: 3 ⋅ (𝑟′(𝑣) − 𝑟(𝑣)) + 1, kde 𝑟(𝑣) je log mohutnosti vrcholu 𝑣 před Splay a 

𝑟′(𝑣) je po Splay
‣ mohutnosti jsou 𝓞(log 𝑛)
‣ všechny operace můžu naúčtovat Splayi, který je 𝓞(log 𝑛)

• Find: Najdu jako v BVS a vysplayuju do kořene
• Insert: Insetrnu jako v BVS a vysplayuju do kořene

‣ přidáním listu zvýším rank celé cesty a tím i potenciál, ale jen o 𝓞(log 𝑛)
• Delete: Vysplayuju do kořene, deletenu, vysplayuju pravého syna levého podstromu

4. Analyzujte hloubku (a,b)-stromů.
• pro hloubku ℎ platí ℎ ∈ Θ(log 𝑛)

5. Analyzujte k-cestný Mergesort v cache-aware modelu. Jaká je optimální volba k?
• log𝑘 𝑛 = log 𝑛

log 𝑘  průchodů

• každá vrstva je 𝓞(𝑛 log 𝑘) (používáme haldu)
• složitost Θ(𝑛⋅ log 𝑘⋅ log 𝑛

log 𝑘 ) = Θ(𝑛 log 𝑛)
• potřebujeme 𝐾 bloků na jednotlivé průchody a dalších 𝐾 na udržení haldy, takže 𝑀 ≥ 2𝐵𝐾 , 

𝐾 ∈ 𝓞(𝑀
𝐵 )

• IO složitost 𝓞( 𝑛
𝐵 ⋅ log 𝑛

log 𝑘) = 𝓞( 𝑛
𝐵 ⋅ log 𝑛

log(𝑀
𝐵 ))

6. Formulujte cache-oblivious algoritmus pro transpozici čtvercové matice. Rozeberte časovou 
složitost a I/O složitost.
• rekurzivní, rozdělíme transpozici na dvě transpozice a dvě kombinované transpozice a 

prohození
• transpozice a prohození se dále rozděluje na čtyři transpozice a prohození
• k reálnému swapování dochází pouze na nejnižší úrovni rekurze, každý prvek se swapne 

jednou, 𝓞(𝑛2)
• IO složitost, v určitou chvíli swapujeme a transponujeme dva bloky velikosti 𝐵 × 𝐵, pokud je 

keš velká alespoň 2 ⋅ 𝐵2 (tall cache assumption, pak se celé takové bločky vejdou do keše a 

transponuje se dobře, každý blok načteme jen jednou, 𝓞(𝑁2

𝐵 )
7. Popište systém hešovacích funkcí odvozený ze skalárního součinu. Dokažte, že je to 1-

-univerzální systém ze ℤ𝑘
𝑝 do ℤ𝑝.

• ℎ𝑣(𝑥) = 𝑥𝑣, vektor 𝑣 je náhodně generovaný a parametrizuje hashovací funkci
• 𝑐-universálnost: 𝑃ℎ∈ℋ︀[ℎ(𝑥) = ℎ(𝑦)] ≤ 𝑐

𝑝
• nechť se x a y liší v 𝑑-tém prvku, 𝑃 [𝑥𝑣 = 𝑦𝑣] = 𝑃 [(𝑥 − 𝑦)𝑣 = 0], bude platit pro právě jednu 

volbu 𝑣𝑑 ⇒ 1
𝑝

8. Popište systém hešovacích funkcí založených na lineární kongruenci. Dokažte, že je to 2-

-nezávislý systém ze ℤ𝑝 do [𝑚] (můžete využít lemma o modulení, které zformulujte, ale 
nemusíte dokazovat).
• ℎ𝑎,𝑏(𝑥) = ((𝑎𝑥 + 𝑏) mod 𝑝) mod 𝑚
• 𝑘, 𝑐-nezávislost: 𝑃ℎ∈ℋ︀[ℎ(𝑥1) = 𝑦1 ∧ … ∧ ℎ(ℎ𝑘) = 𝑦𝑘] = 𝑐

𝑚𝑘

• lemma o modulení: pokud ℋ︀ je 𝑘, 𝑐-nezávislý systém z 𝒰︀ do [𝑟], pak pro 2𝑘𝑚 ≤ 𝑟, 

ℋ︀ mod 𝑚 je 𝑘, 2𝑐-nezávislý
• výběr

𝑟 = (𝑎𝑥 + 𝑏) mod 𝑝
𝑠 = (𝑎𝑦 + 𝑏) mod 𝑝

je bijektivní na výběr 𝑎, 𝑏, tedy je i 2-nezávislý



9. Sestrojte 𝑘-nezávislý systém hešovacích funkcí ze ℤ𝑝 do [𝑚]. Zdůvodněte k-nezávislost (můžete 
využít lemma o modulení, které zformulujte, ale nemusíte dokazovat).
• 𝒫︀𝑘 = {ℎ𝑡 | 𝑡 ∈ ℤ𝑘

𝑝}, ℎ𝑡 = ∑𝑘−1
𝑖=0 𝑡𝑖𝑥𝑖

• existuje právě jeden polynom takový, že pro 𝑥1…𝑥𝑘 a 𝑦1…𝑦𝑘 tž ℎ(𝑥𝑖) = 𝑦𝑖 pro každé 𝑖, tzn. 

pravděpodobnost je 1
𝑝𝑘

• přes lemma o modulení, pokud 𝑝 ≥ 2𝑘𝑚, máme po vymodulení 𝑘, 2-nezávislý systém
10. Sestrojte 2-nezávislý systém hešující řetězce délky nejvýše 𝐿 nad abecedou [𝑎] do [𝑚] založený 

na polynomech, tedy „rolling hash“. Popište výhodu použití tohoto systému oproti jiným 
hešovacím funkcím.
• ℛ︀ = {ℎ𝑎 | 𝑎 ∈ ℤ𝑝}, ℎ𝑎(𝑥) = ∑𝐿−1

𝑖=0 𝑥𝑖+1𝑎𝑖

• dá se posouvat v konstantním čase – vynásobím 𝑎, přičtu příchozí znak, odečtu odchozí znak ⋅
𝑎𝐿 (musím předpočítat 𝑎𝐿)

11. Popište a analyzujte Bloomův filtr. Uveďte příklad jeho praktického použití.
• pomocí hashe indexujeme v poli bitů a flipujeme bity nahoru pro prvky, které jsme viděli
• pak se můžeme ptát „viděli jsme tenhle prvek?“, na což dostaneme buď korektní NE, nebo 

possibly flase positive ANO
• typicky 𝑘 hashovacích funkcí
• také lze mít všechny hashe v jednom poli
• s počítadly lze i delete

12. Definujte k-d stromy a ukažte, že 2-d intervalové dotazy trvají Ω(√n).
• pro data z ℝ𝑘 vytvářím strom, kde na 𝑙-té úrovni mám medián daných podstromů v dimenzi 

𝑙 mod 𝑘
• pro {0} × ℝ to suckuje, pro 𝑥 jdu furt do leva, ale pro 𝑦 furt rekurzím do všech

13. Ukažte, jak dynamizovat dvou dimenzionální intervalové stromy (tedy Range trees), stačí Insert.
• pomocí BB[α] stromů, 𝓞(log2 𝑛)

14. Ukažte, jak použít sufixové pole a LCP pole na nalezení nejdelšího společného podřetězce dvou 
řetězců.
• concatnu za sebe s pomocí oddělovacího znaku, najdu max v LCP t.ž. jeden je před a jeden je 

za oddělovačem
15. Ukažte, jak paralelizovat (a,b)-strom pomocí zámků.

• pomocí top-down strategie — preemptivně rozdělujeme/spojujeme už při cestě dolů, abychom 
vždy mohli udělat Insert nebo Delete

• zamykáme vždy dva vrcholy za sebou
• při deletu může dávat smysl vždy zamykat nejdřív levého sourozence — pro případ, že s ním 

budeme slučovat nebo půjčovat
• pokud odstraňujeme klíč, který není v nejnižší vrstvě, je možné, že budeme muset dlouho 

hledat následníka, kdyžtak se dá vrchol označit hrobečkem
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